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Determination of effective conductivities of imperfect contact composites
with first-passage simulation
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A first-passage simulation scheme is developed to determine the effective conductivities of composites with
matrix-inclusion interfaces of imperfect contact. The necessary mean hitting probabilities and mean scaled
traveling times of the probing walkers in the close vicinity of the imperfect contact interface are derived by
solving proposed boundary value problems. The developed scheme is first validated through application in the
effective conductivity problem of composites containing periodically arranged spherical inclusions for which
accurate results are available for comparison, and is then further applied to the effective conductivity problem
of composites containing randomly distributed spherical inclusions. The present development treats the more
general imperfect contact problem, with the prefect contact problem as one special case.
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[. INTRODUCTION walking event, may stay in its starting phase or cross the
interface and walk into the other phase, at the expense of
The determination of effective properties for heteroge-some mean scaled traveling time. The relevant mean prob-
neous systems has been a classical, important problem ability of crossing the interface and the needed mean scaled
applied physics and engineering. Several different aptraveling time for the probing walker have to be properly
proaches have been developed to treat the problem. Thedetermined to continue the tracking of the walléd,12.
include accurate/approximate solutions of relevant boundarnce the mean probability and the mean scaled traveling
value problems[1-5], construction of upper and lower time for the probing walker wandering at the interface region
bounds[6—8], equivalent inclusion model®,10], and ran- can be obtained, one can continue the tracking until the
dom walk simulationg11,12. Among them, the random walker has probed the composite to a sufficient extent. The
walk simulation is particularly powerful since it can be usedeffective conductivity of the composite can then be deter-
for heterogeneous systems of general microstructure anuined as
property distribution.
For the steady state heat conduction problem discussed o= X?/2dT. ()
here, the temperature field is governed by the Laplace equa-
tion. It is well known that heat conduction can be viewed asHere, X is the displacement distance, measured relative to
a diffusion process of thermal energy, and diffusion pro-the starting point of the probing walker, and traveled by the
cesses can be simulated with random walks. Consequentlpfobing walker in a mean scaled total traveling timeTo
one can use random walk simulations of sufficiently manyget an accurate probing of the microstructure, one needs to
probing walkers to study the heat conduction behavior of drack sufficiently many probing walkers for sufficiently many
material. It can be shown that the mean traveling timeconfigurations for a sufficiently long traveling time.
needed for a random walker to hit the surface of a Itis, however, rather time consuming to follow the detalil

d-dimensional sphere of radilg is zigzag motion of the random walker. A time-saving simula-
tion scheme called the first-passage technique has been de-
r=R%2do. (1) veloped to replace a great number of zigzag motions of the

walker with one single random jump of the walker to the
Here 7 is the mean traveling time scaled by the product ofsurface of a fictitiousl-dimensional sphere lying entirely in
material density and specific heat capaci@y,, andois the  a single phasgl3,14. The essential idea is based on Ep.
thermal conductivity of the material. Evidently, the higher With this, Kim and Torquatd11,12 have successfully de-
the conductivity the shorter the mean scaled traveling timeveloped a first-passage scheme for the computation of effec-
needed since the walker can move faster. For compositeiye conductivities for regular and random arrays of aligned
there exist at least two different materials of generally differ-long cylinders and spheres under the condition of perfect
ent conductivity, and the simulation becomes more complicontact between the matrix and inclusions. It is, however,
cated. First, the traveling speeds of the walker in materials ofommonly encountered that the contact between the matrix
different conductivity are different. More importantly, when and inclusions is imperfedtl5,16. There could be contact
the walker wanders around in the close vicinity of the inter-resistance existing at the matrix-inclusion interface, because
face between two different materials, the walker, at a giverof the imperfect contact, giving rise to a discontinuity in

temperature field across the interface. This interfacial resis-

tance may be characterized with a dimensionless parameter

*Corresponding author. FAX:886-3-5715408. called the Biot numbelrl,3]. The matrix-inclusion contact is
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becomes perfectly insulating when the Biot number reduces T
to zero. The perfect contact problem investigated by Kim and e N Ele)
Torquato[11,12 is a limiting, special case of the present / N
more general scenario of interfacial resistance problem. // Q. \\

In this paper a first-passage scheme is developed for com- | \

putation of effective conductivities for regular and random
arrays of spheres under the more general situation of interfa-
cial resistance. The necessary mean hitting probability and
mean scaled traveling time for probing walkers wandering
around in the close vicinity of the interface under the imper-
fect contact situation are obtained in Sec. Il. The resulting
first-passage scheme is validated in Sec. Il for effective con-
ductivities of the three regular arrays of spheres, namely,
simple cubic (s¢), body-centered cubigbce), and face- FIG. 1. A schematic for the fictitious sphere around a probing
centered cubidfcc), for which accurate results have been wajker that is in the close vicinity of the matrix-inclusion interface.
obtained by Lu4] with a boundary collocation scheme and
by Cheng and Torquatfs] with the multipole expansion walker to hit for the first time the surface of a fictitious
method. The present scheme is then further applied to rasphere of radiuf centering around the probing walker. Fig-
dom arrays of spheres, and comparison with approximatgre 1 shows a probing walker near the interface, which is
results available from the literature is made. It has to b@ocated atx and is a distance away from the interfacd’.
stressed that the present development can be readily exhe interface divides the fictitious sphere into two regions,
tended to more ComplicatEd SyStemS inVOlVing nonuniforn'bne denoted a@l with a boundary Ofo’}Ql in the matrix
inclusions with size, conductivity, contact resistance, an({phase 1 and the othe), with a boundary ofQ), in the
even Shape distribution, which are difficult, if pOSSibIe, t0inclusion (phase 2 Based on the first_passage the@]_y],
tackle with other Computational SChemeS, such as bOUndaWe propose the fo”owing boundary value prob|ems for de-
collocation and multipole expansion. termination of the relevant mean hitting probability and
scaled traveling time functions:

Il. THEORY V2p,=0 in Q,UQ,, (33
We consider simulation of the effective conductivity of B

composites containing regularly or randomly distributed p1(Xx)=1 on 40y, (3b)

spherical inclusions with a first-passage scheme. The contact D1(x)=0 on 4Q,, (30

between the matrix and inclusions is imperfect such that an
interfacial resistance exists at the matrix-inclusion interface, _
giving rise to a discontinuity in the temperature fields while Vpa(x)- n|91_an1(X) ’ n|92
the normal heat fluxes remain continuous across the inter-
face. This interfacial resistance can be characterized as a =(B; /a)[pl(x)|Ql pl(x)|02] on I,
convective type resistance and a dimensionless parameter (3d)
called the Biot number can be defined, as the ratio of the
internal conductive resistance to the external convective reand
sistance of the inclusion, to quantify this interfacial resis-
tance. As the external convective resistance diminishes to
zero, the Biot number approaches infinity and the situation
reduces to the perfect contact case. On the other hand, if the
external convective resistance becomes infinitely large, the
Biot number goes to zero and the inclusion behaves equiva- V7(X)-nlo,=aV7(x)-nlg,
lent to a perfectly insulating inclusion. _ _

To usepsimulation to determine the effective conductivity =(Bi/a)[ 7)o, = 7s(X)]a,] on I
of the composite, one throws in sufficiently many probing (4¢)
walkers to the composite and follows the trajectory of each
probing walker until the probing walker has explored theHerep, is the probability of the probing walker hitting(
composite to a sufficient extent such that a representativeor the first time without hittinggQ),, 75 is the mean travel-
average heat conduction behavior of the composite can bag time, scaled by the product of relevant phase density and
derived. An average of the explored results of sufficientlyspecific heat capacity, for the probing walker to hit
many samplings then gives the effective conductivity of thed(,;U dQ), for the first time,o; and o, are the conductivi-
composite. In the walker tracking process, two pieces of esties of the matrix and inclusion, respectively,is the con-
sential information are needed when the probing walkeductivity ratio of o, to o1, n is the outward unit vector
comes to the close vicinity of the interface: the mean probtnormal tol’, a is the radius of the inclusiorB; defined as
ability and the mean scaled traveling time for the probingha/o, is the Biot number, and the reciprocal bfis the

O'iVZTSZ_l in Qi! (43)

’TS(X):O on anuo"Q2, (4b)
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convective resistance at the interface. Note thgix)=1 as compared to the inclusion size such that the local interface

—p1(x) by definition. The discontinuities in thp,;(x) and I' can be taken approximately as a flat plane dividing the

7«(x) fields across the interface are imposed to take int¢phere into two equal halves. In the following, we present

account the interfacial resistance, while their normal fluxeghe analytical solutions fop; and 75 in domains(); and{},

remain continuous. Additionally, the boundary conditionsfor the flat interface approximation:

(3b), (3¢), and(4b) arise naturally from the definitions @f

and 7. H(r)+B
The above two boundary value problems can be solvedPi(r,0)= B* (a+ 1)+ H()

numerically to findp,(x) and 74(x) with the boundary col- '

location method. The basic idea of the boundary collocation Bf a

method is to first construct a suitable basis solution, which

carries some unknown coefficients and satisfies the govern-

ing equation identically but not necessarily the boundary

o r 2m+1
+ mmzzo bm<§> Pom+1(a)

conditions, and then to force the basis solution to satisfy for Osr<R, Os6O<mw/2, (73
boundary conditions at properly chosen points located on the
relevant boundaries to solve for the unknown coefficients. B*
The end result is a linear equation set solving which deter- pi(r,0)= =% '
mines the unknown coefficients and thus the complete basis Bi (a+1)+H(r)
solution. o om+1
For p,(x), a linear combination of the spherical harmonic x| 1+ E bm( L) Poms1()
functions is a natural choice: m=o R
* n
pl(x)lﬂl:a|()+ zl al % P.(1), (5 for O<r<R, w/2<6<m, (7b)
=
- . “ [(2m)!1A(4m+3)(2m+1) ( r )Zm
p0la,=a+ 3 all B Puw. o 0= 2 mme s (R (7
=
Here,ap, ag, al, anda] are unknown coefficients to be _(=1)"(2m)!(4m+3)
determined with the boundary collocation procedirg the me 22l imn?(m+1) (7d)
nth order Legendre function of the first king, a short no-
tation for cosf, and (, 6, ¢) the spherical coordinates. The (.60) w om+1
problem is axisymmetric and thus there is gaependence. s\ Y [ [ -
Also harmonic functions involving ~" are not included R*/60; (1+c)+3c mzzo Cm( R) Pamea(2)
since p; should remain finite as tends to zero. The un- 5
known coefficients can be readily determined with imposi- + L) [2¢'P,(u)—1]
tion of Egs.(3b) to (3d) at chosen points located @i 9€) 4, R
and dQ,.
As for 7, an extra term accounting for the particular for 0<r<R, 0<6<mu/2, (8a)
solution of the Poisson equation should be included,
7o(X) - r\" r\? s(r,0) 1 e S el
i, = S| (g e R a1 B g Pt
1
) - “ 2 (r)2[2c'P< )+1J]
To(X o alr 1(r IR PV
R%/60, nz—boJFnZl bn(R) Pn(u) a(R) . (6b)
=rs< <¢<
Here, agairby, by , bl,, andb} are unknown coefficients to for 0=r=R, ml2=b=m, (8b)
be determined with the boundary collocation procedure. The 5
mean scaled traveling time is normalized with the mean B*(a—1) 1_(L) }
scaled traveling time of the probing walker wandering in the | ! R
matrix for a distancdR. Note that one needs to truncate the c= r\2]’ (80)
summations involved in Eqg5a), (5b), (6a), and(6b) at a 3K(r)—Bf (1+a) 1—(§) }
finite term, sayN, to allow for numerical computation. A
setting of 30 forN gives satisfactory results.
An approximate analytical solution can be derived if one 4m+3 (—=DH"2m)! 8d)

restricts the size of the fictitious sphere to be relatively small Cm:(m+ 1)(m+2)(2m—1) 2™ {(m!)?"’
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(=1)™2m)! 4m+3
2°" (ml)2 m+1

K(r)=>,

m=0

[(—1)”‘(2"1)!

22m(m! )2

2m+1 (r)zm
m+22m-1)|\R| - ©°

flat interface

Here,B} equalsB;(R/a). The above results reduce correctly ® curved interface

to the corresponding equations derived by Kim and Torquato
[11] for the special case of perfect contact Bstends to
infinity. In Sec. Il results forp; and =g coming from the
above derivations are found to agree well with those from
the accurate boundary collocation calculation.
For simulation purposes, one needs opjyand 7 values
at ¢ of 0 and 7 since one can always situate the probing
walker on the symmetric axis normal to the interface. When
the probing walker is in a single phase, it moves according to g1 2. piot ofp, vsr/R for the case ofr=10 ands,=0.01 for
the first-passage concept. One first constructs the largest pQgreep, (=1,10,100).
sible fictitious sphere that does not intercept with any part of
the other phase, and then sets a random moving direction .
through suitable random numbers. With this moving proce- 0/ _1 9+8aB
dure, the probing walker would very rarely, if not never, 7s(r=0,m)/ 7, a 9+4(1+ a)Bf
exactly hit the interface. One thus needs to define a thin layer
within which the probing walker is claimed to be close l/e as Bf—0
enough to the interface and is possible to cross the interface, - 2[(1+ @) as B* »x. (9d)
spending a mean scaled traveling timg according to the '
mean hitting probabilityp, . Also, one needs a jumping dis-
tanceR when moving within the interfacial thin layer. Let us Here, 7, is R*/60, representing the mean scaled traveling
define d; to be the ratio of the thin layer thicknessdcand time if the probing walker is let wander in phase 1 for a
6, to be the ratio of the interfacial jumping distanceao  distanceR. Evidently, the probing walker can only stay in its
The magnitude o®; should be kept small enough to avoid starting phasgp,(r =0,0)=1 andp;(r =0,7) =0] when the
excessive simulation errors, but not too small to lengthen thénterface is in perfect insulationB{ —0), and the probing
simulation time. As foré,, it has to be relatively large as walker will spend a mean scaled traveling time gfas it
compared tos; to save simulation time and to suppress er-were traveling in a single phasery(r=0,0)/,=1 and
rors induced by a nonzerd, . In the present study, the set- 7 (r=0,7)/r,=1/a]. While for the perfect contact situation
tings of 0.003 ford; and 0.03 fors, give satisfactory results. (B} —), the probing walker hits the surface of the ficti-
Since practically the ratio ob; to d, is only a small  tious sphere located in phase 1 according to the relative easi-
number, say 0.01 for our setting here, one needs to pay afess of traveling in phase Ip;(r=0,0)=p(r=0,7)
tention top, and 75 at locations with a small/R, say less  =1/(1+«)], and spends a weighted average mean scaled
than 0.01. In the following, we present the flat interface aptraveling  time [74(r=0,0)/r,=74(r =0,0m)/ 7, =2/(1
proximation expressions fqu; and 7s atr/R=0 and6=0 1 4)]. Here, the weighted average mean scaled traveling
and . These expressions should give us a quick understangime can be derived as the following:
ing of the characteristics qf; andrg, particularly at the two
limiting scenarios of perfect contact and perfect insulation,

a =10 ; 62=0.01

pl(r,O) or 10 pl(r,n)

R

71X P1(r=0,0+ X py(r=0,m)

3+2Bf 1 asB{—0 )
Pur=00= oy ——— B S S
2Bf(a+ D43 |Ul+a) asBf =, “Tra'alta 1ta 10
(9a)
. Here 7, is equal toR?/60, representing the mean scaled
2B} 0 asBf—0 ;2 ) . .
py(r=0,m) = i . i traveling time if the probing walker is let wander in phase 2
W 2BF (a+1)+3 | 1(1+a) asBf—x,  foradistanceR.
(9b)
IIl. RESULTS AND DISCUSSION
9+8B} 1 asB—0 o
7(r=0 ())/7.1:—'H A. Characteristics of p; and 7
s ’ 9+4(1+a)Bf |2[(1+a) as Bf—x,

We first study the characteristics pf and 7. Figure 2
(90 showsp,(r,0) andp,(r,7) vs r/R with Bi as the varying
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10] While with decreasin®;, 7¢(r=0,0)/7; tends to unity and
ol 7(r=0,m)/ 7, approaches, /7, (=1/a) since the interface
I becomes more difficult to cross and probing walkers tend to
R B stay in their original phases traveling as though they were in
= ]10- : ;
= 071 a single phase environment. Also note that the curves for
5 061 74(r,0)/7, exhibit maxima. This can be explained as follows.
L~ 051 When the starting location of the probing walker moves
= 0s] : away from the interface, the probing walker will have less
- -4 flat interface . .
o 1100 ® curved interface chance to travel in the more conducting and thus more
0.3

] a=10;5,=001 speedy phase 2, and as a result the mean scaled traveling
021 time increases. But when the probing walker moves closer to
0] ¥ \uo/r\ its destiny, the surface of the fictitious sphere, the distance it
0.0 i i ] : has to travel reduces, and the mean scaled traveling time
00 02 04 06 08 Lo decreases. The end result is a maximumgiir,0)/7,. As B;
"R decreases, the location of this maximumngr,0)/7; moves
towards the interface since the interface becomes more dif-
ficult to cross and thus the influence of the possible travel in

phase 2 lessens.

parameter. Both results for flat interface approximation and Although the flat interface approximation approaches the

accurate boundary collocation calculation are presented fgiccurate boundary collocation calculation quite well, it is

the case ofx=10 andd,=0.01. There are several points to found not to be good enough to replace the accurate bound-

note. First, the two calculations agree with each other quit@ry collocation calculation in the first passage simulation. In

well, with the largest discrepancy occurring at the interme-fact, the discrepancy ip; and 7 between results from the

diate B;. The discrepancy comes from the flat interface apiwo methods is found to depend not only anand &, but

proximation. In fact, the true interface concaves towards thalso onB;. It is too difficult to construct a correction factor

inclusion, and one expects the flat interface approximation tas a function of the three parameters; therefore, we use the

underestimatg;(r,0) and overestimatp,(r, ). accurate boundary collocation calculation for all first-
The discontinuity inp; at the interface (/R=0) is  passage simulations performed in this work. The flat inter-

clearly shown in the plot. This discontinuity is a direct resultface approximation, however, helps to capture the physical

of the interfacial resistance, and shrinksBjsincreases to-  insight of the scheme.

wards the perfect contact limit. Whe®, decreases, the in-

terfacial resistance increases and the possibility for the prob-

ing walker originally located in phase 2 to cross the interface B. Validation by comparison with results

and jump onto the surface of the fictitious sphere in phase 1, from periodic composites

p.(r,m), decreases. On the contrary, it becomes more likely

for the probing walker originally located in phase 1 to hitthe To validate the present development, we compute effec-

surface of the fictitious sphere in phasepi(r,0), since itis tive conductivities for periodic composité¢sc, bcc, and foc

now more difficult for the probing walker to cross the inter- of finite Bj* containing regularly arranged spheres. For these

face. With further decrease iB;, py(r,0) will approach types of periodic composites of fini&" , Lu [4] and Cheng

unity, while p,(r, ) tends to zero, as indicated by E48a)  and Torquatd5] computed the accurate effective conductiv-

and (9b). o ity with a boundary collocation scheme and a multipole ex-
As for the study of the mean scaled traveling time we  pansion method, respectively. Here, in Figs. 4—6 we show

plot in Fig. 3 74(r,0)/7; and 7¢(r,m)/7; vS r/R with B; @S he comparison results for sc, bee, and fcc arrays ef10

the varying parameter for the qase_aaf: 10 and 52:0'(_)1' andB;=0.2 and 1/30, respectively. The present development

Again, the flat interface approximation agrees well with theagrees quite well with the accurate calculation. Note that for

accurate boundary collocation calculation. The underest'mac'omposites with interfacial resistances, there exists a critical

tion for 74(r,0)/7; and overestimation for(r, )/, of the s . : : e
flat interface approximation result from the deviation of theB' [=1/(a=1)] at which the effective conductivity of the

true interface shape from a flat plane. Since the true interfac%ompos'te IS gxactl_y un_|tE/2—4], meaning that the en.hanc.|r?g
concaves towards the more conducting inclusiphase 2 effect of the inclusion is exactly balanced by the impairing

there is in fact a larger portion of the volume of the fictitious _effect of the interfacial resistance. The effective conductivity
sphere occupied by the less conducting phase 1, in whic

FIG. 3. Plot ofrg vsr/R for the case otvr=10 andé,=0.01 for
threeB; (=1,10,100).

jncreases with an increasing volume fraction of the inclusion
probing walkers travel slower and need a longer mean scaléf Bi IS set above the critica;. On the other hand, the
traveling time to reach the sphere surface. With the samgffective conductivity decreases with an increasing volume
|ogic, one can exp|ain Why there is an overestimation forfraction of the inclusion iBi is set below the criticalBi. For
7(r, )/, given by the flat interface approximation. the case ofx=10, the criticalB; is 1/9, and this is why the
The discontinuity inrg at the interface is evident from the curves ofB;=0.2 go up while the curves dB;=1/30 go
figure. AsB; increases, the discontinuity shrinks as expecteddown in the figures with increasing The simulation results
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1.8 1.8
1.6 Cheng & Torquato, Ref. [5] 164 —— Cheng & Torquato, Ref. [5]
® this work 1 ® this work
1.4 4 1.4 -
= 1.2 4 124
o = = —
A a=10, B=0.2 b
b5 1.0 =~ 1.0 H
b B°
08+ a =10, B=1/30 0.8+
a =10, B;=1/30
0.6 0.6 4
04 T i T i T i T i T i ! 0.4 L A S A S A A L IR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
f f
FIG. 4. Normalized effective conductivity vs the inclusion vol- FIG. 6. Normalized effective conductivity vs the inclusion vol-

ume fraction for simple-cubic spherical arrays for the case ofume fraction for face-centered-cubic spherical arrays for the case of
«=10 andB;=0.2 and 1/30 as obtained from the present simula-4=10 andB;=0.2 and 1/30 as obtained from the present simula-
tion and from the accurate calculation of Cheng and Torql&to  tion and from the accurate calculation of Cheng and Torq[ito

are averages of 100 runs with each run obtained from folywe move each inclusion at least 1000 times. The number of
lowing 200 probing walkers for a total displacement of 100particles used in a unit cell has to be large enough to ensure
to 300 (X/a)®. sufficient randomness of the array. We generate the random
arrays with 16, 32, and 54 spheres per unit cBlj) to test

C. Results for random arrays the convergence of the effective conductivity result with re-
nePect to the particle number used. Again, the simulation re-
|%J|ts are obtained from the average of 100 realizations with
each realization probed by 200 random walkers for a total
(isplacement of 100 to 300¢(a)?.

Chiew and Glandf1] have investigated the same problem

y taking into account rigorous thermal interactions between
‘particles up to the pair interaction level such that their results
-are accurate to th©(f?) terms,

We further apply the present development to rando
spherical arrays. The random arrays are generated with t
Metropolis algorithn{ 18]. The essence of the algorithm is to
first arrange inclusions in a regular array in a unit cell, an
then to randomize the array by moving each inclusion in ab
random direction, under the restriction of nonoverlapping
sufficiently many times. The usual periodic boundary condi
tion is imposed to extend the unit cell to represent an infi

nitely large composite space. Here, we use both the body- 1420-F+ (Ko 362)f2
centered-cubic and face-centered-cubic arrays as the starting Teff _ 62T +(K,—361) , (113
regular arrays to generate the random spherical arrays, and 01 1—-0.f
1.8 4 with
16 ——— Cheng & Torquato, Ref. [5] Bi(o,—1)—1
® this work 1:m. (11b)

1.4 4

Here K, is a function of the pair correlation function of
equilibrium hard-sphere fluids and the dimensionless multi-
pole polarizability of the thermal interactions. He#g,is the
relevant dimensionless dipole polarizability. Interested read-
ers can consult Chiew and Glaridi for details. In addition,

it was mentioned in Cheng and Torqudfg that Torquato
and Rintoul derived a good approximate formula for the
present problem:

21 a=10, B,=0.2

1.0 4

aeff/al

0.8 4
a =10, B,=1/30

0.6

0.4

0.0 0.1 0.2 0.3 f 0.4 0.5 0.6 0.7 Ef_ 1+2 f01—2(1—f )§29i (12)
o1 1-f6,—2(1—f)g,6%

FIG. 5. Normalized effective conductivity vs the inclusion vol-
ume fraction for body-centered-cubic spherical arrays for the caswheres, is a three-point microstructural parameter that has
of =10 andB;=0.2 and 1/30 as obtained from the present simu-been tabulated for random spherical arrays by Miller and
lation and from the accurate calculation of Cheng and Torgiito  Torquato[8].
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45 higher f particle interactions beyond the pair interaction

1 level are needed. Third, the approximate formula given in
Eqg. (12) gives good estimates even at hights success may
be due to the accurate account of the system microstructure.

4.0 4 —Eq. (11)
® Eq.(12)
B this work, Np:16
A this work, N =32
V¥ this work, Np:54

3.5 4

IV. CONCLUSION

3.0

We have developed a first-passage simulation scheme for
the computation of effective conductivities of composites
with interfacial resistance at the matrix-inclusion interface.
The scheme is illustrated with the computation of effective
conductivities of two-phase composites containing regularly
or randomly distributed spheres. It is, however, worth men-
tioning that the scheme can be readily extended to multi-
phase composites in which inclusions of different conductiv-
ity are present. Since the interfacial region concerned in the
f simulation process is a local, small region and is irrelevant to
. . . . . the shape of the inclusion, the scheme is also expected to be
e o o e ey ot e’ applcable (0 composies containg nlusins with shepe

= . . : other than spherical provided that the inclusion shape is
B;=10 as obtained from the present simulation and the two ap- .
proximate formulas, Eq€11) and (12). smooth enough Wl_thout sha_rp_ corners or sharp an_gles._ FL_Jr-

thermore, composites containing inclusions of a size distri-

Figure 7 shows the effective conductivity results obtainedPution can also be treated with the present scheme.
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