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Determination of effective conductivities of imperfect contact composites
with first-passage simulation

Shih-Yuan Lu* and Chih-Ying Lin
Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043, Republic of China

~Received 27 June 2003; published 13 November 2003!

A first-passage simulation scheme is developed to determine the effective conductivities of composites with
matrix-inclusion interfaces of imperfect contact. The necessary mean hitting probabilities and mean scaled
traveling times of the probing walkers in the close vicinity of the imperfect contact interface are derived by
solving proposed boundary value problems. The developed scheme is first validated through application in the
effective conductivity problem of composites containing periodically arranged spherical inclusions for which
accurate results are available for comparison, and is then further applied to the effective conductivity problem
of composites containing randomly distributed spherical inclusions. The present development treats the more
general imperfect contact problem, with the prefect contact problem as one special case.

DOI: 10.1103/PhysRevE.68.056705 PACS number~s!: 02.60.2x, 44.05.1e, 44.10.1i
e
m
ap
he
a
r

ed
a

s
qu
a
ro
n
n
f

m
a

o

er
im
ite
er
pl
s
n
er
e

the
e of
rob-
aled
rly

ling
ion
the
he

er-

to
he

s to
y

ail
la-

de-
the
e

-
fec-
ed
ect
er,
trix

t
use
in
sis-
eter

e

I. INTRODUCTION

The determination of effective properties for heterog
neous systems has been a classical, important proble
applied physics and engineering. Several different
proaches have been developed to treat the problem. T
include accurate/approximate solutions of relevant bound
value problems@1–5#, construction of upper and lowe
bounds@6–8#, equivalent inclusion models@9,10#, and ran-
dom walk simulations@11,12#. Among them, the random
walk simulation is particularly powerful since it can be us
for heterogeneous systems of general microstructure
property distribution.

For the steady state heat conduction problem discus
here, the temperature field is governed by the Laplace e
tion. It is well known that heat conduction can be viewed
a diffusion process of thermal energy, and diffusion p
cesses can be simulated with random walks. Conseque
one can use random walk simulations of sufficiently ma
probing walkers to study the heat conduction behavior o
material. It can be shown that the mean traveling ti
needed for a random walker to hit the surface of
d-dimensional sphere of radiusR is

t5R2/2ds. ~1!

Here t is the mean traveling time scaled by the product
material densityr and specific heat capacityCp , ands is the
thermal conductivity of the material. Evidently, the high
the conductivity the shorter the mean scaled traveling t
needed since the walker can move faster. For compos
there exist at least two different materials of generally diff
ent conductivity, and the simulation becomes more com
cated. First, the traveling speeds of the walker in material
different conductivity are different. More importantly, whe
the walker wanders around in the close vicinity of the int
face between two different materials, the walker, at a giv
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walking event, may stay in its starting phase or cross
interface and walk into the other phase, at the expens
some mean scaled traveling time. The relevant mean p
ability of crossing the interface and the needed mean sc
traveling time for the probing walker have to be prope
determined to continue the tracking of the walker@11,12#.
Once the mean probability and the mean scaled trave
time for the probing walker wandering at the interface reg
can be obtained, one can continue the tracking until
walker has probed the composite to a sufficient extent. T
effective conductivity of the composite can then be det
mined as

seff5X2/2dT. ~2!

Here, X is the displacement distance, measured relative
the starting point of the probing walker, and traveled by t
probing walker in a mean scaled total traveling timeT. To
get an accurate probing of the microstructure, one need
track sufficiently many probing walkers for sufficiently man
configurations for a sufficiently long traveling time.

It is, however, rather time consuming to follow the det
zigzag motion of the random walker. A time-saving simu
tion scheme called the first-passage technique has been
veloped to replace a great number of zigzag motions of
walker with one single random jump of the walker to th
surface of a fictitiousd-dimensional sphere lying entirely in
a single phase@13,14#. The essential idea is based on Eq.~1!.
With this, Kim and Torquato@11,12# have successfully de
veloped a first-passage scheme for the computation of ef
tive conductivities for regular and random arrays of align
long cylinders and spheres under the condition of perf
contact between the matrix and inclusions. It is, howev
commonly encountered that the contact between the ma
and inclusions is imperfect@15,16#. There could be contac
resistance existing at the matrix-inclusion interface, beca
of the imperfect contact, giving rise to a discontinuity
temperature field across the interface. This interfacial re
tance may be characterized with a dimensionless param
called the Biot number@1,3#. The matrix-inclusion contact is
perfect when the Biot number is infinity while the interfac
©2003 The American Physical Society05-1
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becomes perfectly insulating when the Biot number redu
to zero. The perfect contact problem investigated by Kim a
Torquato @11,12# is a limiting, special case of the prese
more general scenario of interfacial resistance problem.

In this paper a first-passage scheme is developed for c
putation of effective conductivities for regular and rando
arrays of spheres under the more general situation of inte
cial resistance. The necessary mean hitting probability
mean scaled traveling time for probing walkers wander
around in the close vicinity of the interface under the imp
fect contact situation are obtained in Sec. II. The result
first-passage scheme is validated in Sec. III for effective c
ductivities of the three regular arrays of spheres, nam
simple cubic ~sc!, body-centered cubic~bcc!, and face-
centered cubic~fcc!, for which accurate results have bee
obtained by Lu@4# with a boundary collocation scheme an
by Cheng and Torquato@5# with the multipole expansion
method. The present scheme is then further applied to
dom arrays of spheres, and comparison with approxim
results available from the literature is made. It has to
stressed that the present development can be readily
tended to more complicated systems involving nonunifo
inclusions with size, conductivity, contact resistance, a
even shape distribution, which are difficult, if possible,
tackle with other computational schemes, such as boun
collocation and multipole expansion.

II. THEORY

We consider simulation of the effective conductivity
composites containing regularly or randomly distribut
spherical inclusions with a first-passage scheme. The con
between the matrix and inclusions is imperfect such that
interfacial resistance exists at the matrix-inclusion interfa
giving rise to a discontinuity in the temperature fields wh
the normal heat fluxes remain continuous across the in
face. This interfacial resistance can be characterized a
convective type resistance and a dimensionless param
called the Biot number can be defined, as the ratio of
internal conductive resistance to the external convective
sistance of the inclusion, to quantify this interfacial res
tance. As the external convective resistance diminishe
zero, the Biot number approaches infinity and the situat
reduces to the perfect contact case. On the other hand, i
external convective resistance becomes infinitely large,
Biot number goes to zero and the inclusion behaves equ
lent to a perfectly insulating inclusion.

To use simulation to determine the effective conductiv
of the composite, one throws in sufficiently many probi
walkers to the composite and follows the trajectory of ea
probing walker until the probing walker has explored t
composite to a sufficient extent such that a representa
average heat conduction behavior of the composite can
derived. An average of the explored results of sufficien
many samplings then gives the effective conductivity of
composite. In the walker tracking process, two pieces of
sential information are needed when the probing wal
comes to the close vicinity of the interface: the mean pr
ability and the mean scaled traveling time for the prob
05670
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walker to hit for the first time the surface of a fictitiou
sphere of radiusR centering around the probing walker. Fig
ure 1 shows a probing walker near the interface, which
located atx and is a distancer away from the interfaceG.
The interface divides the fictitious sphere into two regio
one denoted asV1 with a boundary of]V1 in the matrix
~phase 1! and the otherV2 with a boundary of]V2 in the
inclusion ~phase 2!. Based on the first-passage theory@17#,
we propose the following boundary value problems for d
termination of the relevant mean hitting probability an
scaled traveling time functions:

¹2p150 in V1øV2 , ~3a!

p1~x!51 on ]V1 , ~3b!

p1~x!50 on ]V2 , ~3c!

¹p1~x!•nuV1
5a¹p1~x!•nuV2

5~Bi /a!@p1~x!uV1
2p1~x!uV2

# on G,

~3d!

and

s i¹
2ts521 in V i , ~4a!

ts~x!50 on ]V1ø]V2 , ~4b!

¹ts~x!•nuV1
5a¹ts~x!•nuV2

5~Bi /a!@ts~x!uV1
2ts~x!uV2

# on G.

~4c!

Herep1 is the probability of the probing walker hitting]V1
for the first time without hitting]V2 , ts is the mean travel-
ing time, scaled by the product of relevant phase density
specific heat capacity, for the probing walker to h
]V1ø]V2 for the first time,s1 ands2 are the conductivi-
ties of the matrix and inclusion, respectively,a is the con-
ductivity ratio of s2 to s1 , n is the outward unit vector
normal toG, a is the radius of the inclusion,Bi defined as
ha/s2 is the Biot number, and the reciprocal ofh is the

FIG. 1. A schematic for the fictitious sphere around a prob
walker that is in the close vicinity of the matrix-inclusion interfac
5-2



nt
e

ns

ve

io
ic
er
ar
isf
th
ts

te
as

ic

e

e
.

-
si

ar

h
a
he
he

ne
a

face
the
ent

DETERMINATION OF EFFECTIVE CONDUCTIVITIES . . . PHYSICAL REVIEW E 68, 056705 ~2003!
convective resistance at the interface. Note thatp2(x)51
2p1(x) by definition. The discontinuities in thep1(x) and
ts(x) fields across the interface are imposed to take i
account the interfacial resistance, while their normal flux
remain continuous. Additionally, the boundary conditio
~3b!, ~3c!, and~4b! arise naturally from the definitions ofp1
andts .

The above two boundary value problems can be sol
numerically to findp1(x) andts(x) with the boundary col-
location method. The basic idea of the boundary collocat
method is to first construct a suitable basis solution, wh
carries some unknown coefficients and satisfies the gov
ing equation identically but not necessarily the bound
conditions, and then to force the basis solution to sat
boundary conditions at properly chosen points located on
relevant boundaries to solve for the unknown coefficien
The end result is a linear equation set solving which de
mines the unknown coefficients and thus the complete b
solution.

For p1(x), a linear combination of the spherical harmon
functions is a natural choice:

p1~x!uV1
5a0

I 1 (
n51

`

an
I S r

RD n

Pn~m!, ~5a!

p1~x!uV2
5a0

II 1 (
n51

`

an
II S r

RD n

Pn~m!. ~5b!

Here, a0
I , a0

II , an
I , and an

II are unknown coefficients to b
determined with the boundary collocation procedure,Pn the
nth order Legendre function of the first kind,m a short no-
tation for cosu, and (r ,u,f) the spherical coordinates. Th
problem is axisymmetric and thus there is nof dependence
Also harmonic functions involvingr 2n are not included
since p1 should remain finite asr tends to zero. The un
known coefficients can be readily determined with impo
tion of Eqs.~3b! to ~3d! at chosen points located onG, ]V1 ,
and]V2 .

As for ts , an extra term accounting for the particul
solution of the Poisson equation should be included,

ts~x!

R2/6s1
U

V1

5b0
I 1 (

n51

`

bn
I S r

RD n

Pn~m!2S r

RD 2

, ~6a!

ts~x!

R2/6s1
U

V2

5b0
II 1 (

n51

`

bn
II S r

RD n

Pn~m!2
1

a S r

RD 2

. ~6b!

Here, againb0
I , b0

II , bn
I , andbn

II are unknown coefficients to
be determined with the boundary collocation procedure. T
mean scaled traveling time is normalized with the me
scaled traveling time of the probing walker wandering in t
matrix for a distanceR. Note that one needs to truncate t
summations involved in Eqs.~5a!, ~5b!, ~6a!, and ~6b! at a
finite term, sayN, to allow for numerical computation. A
setting of 30 forN gives satisfactory results.

An approximate analytical solution can be derived if o
restricts the size of the fictitious sphere to be relatively sm
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as compared to the inclusion size such that the local inter
G can be taken approximately as a flat plane dividing
sphere into two equal halves. In the following, we pres
the analytical solutions forp1 andts in domainsV1 andV2
for the flat interface approximation:

p1~r ,u!5
H~r !1Bi*

Bi* ~a11!1H~r !

1
Bi* a

Bi* a1H~r !1Bi*
(

m50

`

bmS r

RD 2m11

P2m11~m!

for 0<r<R, 0<u<p/2, ~7a!

p1~r ,u!5
Bi*

Bi* ~a11!1H~r !

3F11 (
m50

`

bmS r

RD 2m11

P2m11~m!G
for 0<r<R, p/2<u<p, ~7b!

H~r !5 (
m50

`
@~2m!! #2~4m13!~2m11!

24m11~m! !4~m11! S r

RD 2m

, ~7c!

bm5
~21!m~2m!! ~4m13!

22m11~m! !2~m11!
, ~7d!

ts~r ,u!

R2/6s1
5~11cI !13cI (

m50

`

cmS r

RD 2m11

P2m11~m!

1S r

RD 2

@2cI P2~m!21#

for 0<r<R, 0<u<p/2, ~8a!

ts~r ,u!

R2/6s1
5

1

a H 12cI13cI (
m50

`

cmS r

RD 2m11

P2m11~m!

2S r

RD 2

@2cI P2~m!11#J
for 0<r<R, p/2<u<p, ~8b!

cI5

Bi* ~a21!F12S r

RD 2G
3K~r !2Bi* ~11a!F12S r

RD 2G , ~8c!

cm5
4m13

~m11!~m12!~2m21!

~21!m~2m!!

22m11~m! !2 , ~8d!
5-3
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K~r !5 (
m50

` F ~21!m~2m!!

22m11~m! !2

4m13

m11 G
3F ~21!m~2m!!

22m~m! !2 G 2m11

~m12!~2m21! S r

RD 2m

. ~8e!

Here,Bi* equalsBi(R/a). The above results reduce correct
to the corresponding equations derived by Kim and Torqu
@11# for the special case of perfect contact asBi tends to
infinity. In Sec. III results forp1 and ts coming from the
above derivations are found to agree well with those fr
the accurate boundary collocation calculation.

For simulation purposes, one needs onlyp1 andts values
at u of 0 and p since one can always situate the probi
walker on the symmetric axis normal to the interface. Wh
the probing walker is in a single phase, it moves accordin
the first-passage concept. One first constructs the largest
sible fictitious sphere that does not intercept with any par
the other phase, and then sets a random moving direc
through suitable random numbers. With this moving pro
dure, the probing walker would very rarely, if not neve
exactly hit the interface. One thus needs to define a thin la
within which the probing walker is claimed to be clos
enough to the interface and is possible to cross the interf
spending a mean scaled traveling timets , according to the
mean hitting probabilityp1 . Also, one needs a jumping dis
tanceR when moving within the interfacial thin layer. Let u
defined1 to be the ratio of the thin layer thickness toa and
d2 to be the ratio of the interfacial jumping distance toa.
The magnitude ofd1 should be kept small enough to avo
excessive simulation errors, but not too small to lengthen
simulation time. As ford2 , it has to be relatively large a
compared tod1 to save simulation time and to suppress
rors induced by a nonzerod1 . In the present study, the se
tings of 0.003 ford1 and 0.03 ford2 give satisfactory results

Since practically the ratio ofd1 to d2 is only a small
number, say 0.01 for our setting here, one needs to pay
tention top1 and ts at locations with a smallr /R, say less
than 0.01. In the following, we present the flat interface a
proximation expressions forp1 and ts at r /R50 andu50
andp. These expressions should give us a quick understa
ing of the characteristics ofp1 andts , particularly at the two
limiting scenarios of perfect contact and perfect insulatio

p1~r 50,0!5
312Bi*

2Bi* ~a11!13
→H 1 as Bi* →0

1/~11a! as Bi* →`,

~9a!

p1~r 50,p!5
2Bi*

2Bi* ~a11!13
→H 0 as Bi* →0

1/~11a! as Bi* →`,

~9b!

ts~r 50,0!/t15
918Bi*

914~11a!Bi*
→H 1 as Bi* →0

2/~11a! as Bi* →`,

~9c!
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ts~r 50,p!/t15
1

a

918aBi*

914~11a!Bi*

→H 1/a as Bi* →0

2/~11a! as Bi* →`.
~9d!

Here, t1 is R2/6s1 representing the mean scaled traveli
time if the probing walker is let wander in phase 1 for
distanceR. Evidently, the probing walker can only stay in i
starting phase@p1(r 50,0)51 andp1(r 50,p)50] when the
interface is in perfect insulation (Bi* →0), and the probing
walker will spend a mean scaled traveling time oft1 as it
were traveling in a single phase@ts(r 50,0)/t151 and
ts(r 50,p)/t151/a]. While for the perfect contact situation
(Bi* →`), the probing walker hits the surface of the fict
tious sphere located in phase 1 according to the relative e
ness of traveling in phase 1@p1(r 50,0)5p1(r 50,p)
51/(11a)#, and spends a weighted average mean sca
traveling time @ts(r 50,0)/t15ts(r 50,0p)/t152/(1
1a)#. Here, the weighted average mean scaled trave
time can be derived as the following:

t13p1~r 50,0!1t23p1~r 50,p!

5
t1

11a
1

t1

a

a

11a
5

2t1

11a
. ~10!

Here t2 is equal toR2/6s2 representing the mean scale
traveling time if the probing walker is let wander in phase
for a distanceR.

III. RESULTS AND DISCUSSION

A. Characteristics of p1 and ts

We first study the characteristics ofp1 and ts . Figure 2
showsp1(r ,0) andp1(r ,p) vs r /R with Bi as the varying

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 flat interface
 curved interface 

 = 10  ;   
2
 = 0.01

100

10

1

100

10

B
i
=1

10 p
1
(r, )

p
1
(r,0)

p 1(r
,0

) 
 o

r 
 1

0 
p 1(r

,  π
)

r/R

α δ

FIG. 2. Plot ofp1 vs r /R for the case ofa510 andd250.01 for
threeBi (51,10,100).
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parameter. Both results for flat interface approximation a
accurate boundary collocation calculation are presented
the case ofa510 andd250.01. There are several points
note. First, the two calculations agree with each other q
well, with the largest discrepancy occurring at the interm
diateBi . The discrepancy comes from the flat interface a
proximation. In fact, the true interface concaves towards
inclusion, and one expects the flat interface approximatio
underestimatep1(r ,0) and overestimatep1(r ,p).

The discontinuity in p1 at the interface (r /R50) is
clearly shown in the plot. This discontinuity is a direct res
of the interfacial resistance, and shrinks asBi increases to-
wards the perfect contact limit. WhenBi decreases, the in
terfacial resistance increases and the possibility for the p
ing walker originally located in phase 2 to cross the interfa
and jump onto the surface of the fictitious sphere in phas
p1(r ,p), decreases. On the contrary, it becomes more lik
for the probing walker originally located in phase 1 to hit t
surface of the fictitious sphere in phase 1,p1(r ,0), since it is
now more difficult for the probing walker to cross the inte
face. With further decrease inBi , p1(r ,0) will approach
unity, while p1(r ,p) tends to zero, as indicated by Eqs.~9a!
and ~9b!.

As for the study of the mean scaled traveling timets , we
plot in Fig. 3 ts(r ,0)/t1 and ts(r ,p)/t1 vs r /R with Bi as
the varying parameter for the case ofa510 andd250.01.
Again, the flat interface approximation agrees well with t
accurate boundary collocation calculation. The underesti
tion for ts(r ,0)/t1 and overestimation forts(r ,p)/t1 of the
flat interface approximation result from the deviation of t
true interface shape from a flat plane. Since the true inter
concaves towards the more conducting inclusion~phase 2!,
there is in fact a larger portion of the volume of the fictitio
sphere occupied by the less conducting phase 1, in w
probing walkers travel slower and need a longer mean sc
traveling time to reach the sphere surface. With the sa
logic, one can explain why there is an overestimation
ts(r ,p)/t1 given by the flat interface approximation.

The discontinuity ints at the interface is evident from th
figure. AsBi increases, the discontinuity shrinks as expect

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 3. Plot ofts vs r /R for the case ofa510 andd250.01 for
threeBi (51,10,100).
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While with decreasingBi , ts(r 50,0)/t1 tends to unity and
ts(r 50,p)/t1 approachest2 /t1 (51/a) since the interface
becomes more difficult to cross and probing walkers tend
stay in their original phases traveling as though they were
a single phase environment. Also note that the curves
ts(r ,0)/t1 exhibit maxima. This can be explained as follow
When the starting location of the probing walker mov
away from the interface, the probing walker will have le
chance to travel in the more conducting and thus m
speedy phase 2, and as a result the mean scaled trav
time increases. But when the probing walker moves close
its destiny, the surface of the fictitious sphere, the distanc
has to travel reduces, and the mean scaled traveling
decreases. The end result is a maximum ints(r ,0)/t1 . As Bi

decreases, the location of this maximumts(r ,0)/t1 moves
towards the interface since the interface becomes more
ficult to cross and thus the influence of the possible trave
phase 2 lessens.

Although the flat interface approximation approaches
accurate boundary collocation calculation quite well, it
found not to be good enough to replace the accurate bou
ary collocation calculation in the first passage simulation.
fact, the discrepancy inp1 and ts between results from the
two methods is found to depend not only ona and d2 but
also onBi . It is too difficult to construct a correction facto
as a function of the three parameters; therefore, we use
accurate boundary collocation calculation for all firs
passage simulations performed in this work. The flat int
face approximation, however, helps to capture the phys
insight of the scheme.

B. Validation by comparison with results
from periodic composites

To validate the present development, we compute eff
tive conductivities for periodic composites~sc, bcc, and fcc!
of finite Bi* containing regularly arranged spheres. For the
types of periodic composites of finiteBi* , Lu @4# and Cheng
and Torquato@5# computed the accurate effective conduct
ity with a boundary collocation scheme and a multipole e
pansion method, respectively. Here, in Figs. 4–6 we sh
the comparison results for sc, bcc, and fcc arrays ofa510
andBi50.2 and 1/30, respectively. The present developm
agrees quite well with the accurate calculation. Note that
composites with interfacial resistances, there exists a crit
Bi @51/(a21)# at which the effective conductivity of the
composite is exactly unity@2–4#, meaning that the enhancin
effect of the inclusion is exactly balanced by the impairi
effect of the interfacial resistance. The effective conductiv
increases with an increasing volume fraction of the inclus
if Bi is set above the criticalBi . On the other hand, the
effective conductivity decreases with an increasing volu
fraction of the inclusion ifBi is set below the criticalBi . For
the case ofa510, the criticalBi is 1/9, and this is why the
curves ofBi50.2 go up while the curves ofBi51/30 go
down in the figures with increasingf . The simulation results
5-5
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are averages of 100 runs with each run obtained from
lowing 200 probing walkers for a total displacement of 1
to 300 (X/a)2.

C. Results for random arrays

We further apply the present development to rand
spherical arrays. The random arrays are generated with
Metropolis algorithm@18#. The essence of the algorithm is
first arrange inclusions in a regular array in a unit cell, a
then to randomize the array by moving each inclusion i
random direction, under the restriction of nonoverlappi
sufficiently many times. The usual periodic boundary con
tion is imposed to extend the unit cell to represent an i
nitely large composite space. Here, we use both the bo
centered-cubic and face-centered-cubic arrays as the sta
regular arrays to generate the random spherical arrays,
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FIG. 4. Normalized effective conductivity vs the inclusion vo
ume fraction for simple-cubic spherical arrays for the case
a510 andBi50.2 and 1/30 as obtained from the present simu
tion and from the accurate calculation of Cheng and Torquato@5#.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

  = 10, B
i
 = 1/30

 α = 10, B
i
 = 0.2

α 
ef

f / 
 

1

f

 Cheng & Torquato, Ref. [5]
 this work

α 

 α

FIG. 5. Normalized effective conductivity vs the inclusion vo
ume fraction for body-centered-cubic spherical arrays for the c
of a510 andBi50.2 and 1/30 as obtained from the present sim
lation and from the accurate calculation of Cheng and Torquato@5#.
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we move each inclusion at least 1000 times. The numbe
particles used in a unit cell has to be large enough to en
sufficient randomness of the array. We generate the ran
arrays with 16, 32, and 54 spheres per unit cell (Np) to test
the convergence of the effective conductivity result with
spect to the particle number used. Again, the simulation
sults are obtained from the average of 100 realizations w
each realization probed by 200 random walkers for a to
displacement of 100 to 300 (X/a)2.

Chiew and Glandt@1# have investigated the same proble
by taking into account rigorous thermal interactions betwe
particles up to the pair interaction level such that their res
are accurate to theO( f 2) terms,

seff

s1
5

112u1f 1~K223u1
2! f 2

12u1f
, ~11a!

with

u15
Bi~s221!21

Bi~s212!12
. ~11b!

Here K2 is a function of the pair correlation function o
equilibrium hard-sphere fluids and the dimensionless mu
pole polarizability of the thermal interactions. Here,u1 is the
relevant dimensionless dipole polarizability. Interested re
ers can consult Chiew and Glandt@1# for details. In addition,
it was mentioned in Cheng and Torquato@5# that Torquato
and Rintoul derived a good approximate formula for t
present problem:

seff

s1
5

112 f u122~12 f !§2u1
2

12 f u122~12 f !§2u1
2 , ~12!

where§2 is a three-point microstructural parameter that h
been tabulated for random spherical arrays by Miller a
Torquato@8#.
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FIG. 6. Normalized effective conductivity vs the inclusion vo
ume fraction for face-centered-cubic spherical arrays for the cas
a510 andBi50.2 and 1/30 as obtained from the present simu
tion and from the accurate calculation of Cheng and Torquato@5#.
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Figure 7 shows the effective conductivity results obtain
with the present development and the aforementioned
approximations for the random spherical arrays for the c
of a510 andBi510. There are several points to note. Fir
the convergence test with respect to the particle numbe
satisfactory as can be seen from the overlap of the three
of data forNp of 16, 32, and 54. Second, the pair interacti
approach overestimates the effective conductivity at hig
inclusion volume fractions, which is not surprising since
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FIG. 7. Normalized effective conductivity vs the inclusion vo
ume fraction for random spherical arrays for the case ofa510 and
Bi510 as obtained from the present simulation and the two
proximate formulas, Eqs.~11! and ~12!.
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higher f particle interactions beyond the pair interactio
level are needed. Third, the approximate formula given
Eq. ~12! gives good estimates even at highf . Its success may
be due to the accurate account of the system microstruc

IV. CONCLUSION

We have developed a first-passage simulation scheme
the computation of effective conductivities of composit
with interfacial resistance at the matrix-inclusion interfac
The scheme is illustrated with the computation of effect
conductivities of two-phase composites containing regula
or randomly distributed spheres. It is, however, worth me
tioning that the scheme can be readily extended to mu
phase composites in which inclusions of different conduc
ity are present. Since the interfacial region concerned in
simulation process is a local, small region and is irrelevan
the shape of the inclusion, the scheme is also expected t
applicable to composites containing inclusions with sha
other than spherical provided that the inclusion shape
smooth enough without sharp corners or sharp angles.
thermore, composites containing inclusions of a size dis
bution can also be treated with the present scheme.
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